

第三讲: 混凝土一维受力本构关系

任晓丹 同济大学土木工程学院

<mark>混凝土本构关系</mark>: 在外部作用下, 混凝土材料内部应力 与应变之间的物理关系。

这种物理关系在细观意义上描述了混凝土材料的基本力 学性质,构成了研究混凝土构件和结构在外部作用下的 变形及运动的基础。

The Creation of Adam

A fresco painting by Michelangelo, which forms part of the Sistine Chapel's ceiling, painted c. 1508–1512.

非线性! 随机性!

▶ 单轴受压实验

MTS

单轴受压应力应变全曲线

➢ Hogenestad模型(北美)

 $\varepsilon_p \approx 0.002$ $\varepsilon_u \approx 0.0033$

➤ Hogenestad模型(北美)

为什么模型和实测曲线差别很大?

- 简单、简练
- 适用于构件理论分析与建模
- 下降段考虑了能量等效
- 下降段考虑了应变梯度的影响
- 下降段综合考虑了可能的箍筋

约束影响

单轴受压本构关系

$$\sigma = \frac{A\varepsilon/\varepsilon_p + (D-1)(\varepsilon/\varepsilon_p)^2}{1 + (A-2)\varepsilon/\varepsilon_p + D(\varepsilon/\varepsilon_p)^2} f_c$$

其中A= E_0/E_p , E_0 是弹性模量, E_p 是峰 值割线模量。D是形状参数, \mathbb{R}_0 ~1。 欧洲混凝土规范CEB-FIP90中, \mathbb{R} D=0, 简化的Sargin公式

$$\sigma = \frac{E_0 \varepsilon / E_p \varepsilon_p - (\varepsilon / \varepsilon_p)^2}{1 + (E_0 / E_p - 2) \varepsilon / \varepsilon_p} f_c$$

➤ Saenz模型

$$\sigma = \frac{E_0 \varepsilon}{A + B \varepsilon / \varepsilon_p + C (\varepsilon / \varepsilon_p)^2 + D (\varepsilon / \varepsilon_p)^3}$$

常数A、B、C、D用待定系数法确定

$$\sigma(0) = 0 \qquad \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=0} = E_0$$

$$\sigma(\varepsilon_p) = \sigma_0 \qquad \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=0} = 0$$

$$\sigma(\varepsilon_u) = \sigma_u \qquad \frac{d\sigma}{d\varepsilon}\Big|_{\varepsilon=\varepsilon_p} = 0$$

不计最后一个条件, 解得:

$$\sigma = \frac{E_0 \varepsilon}{1 + (E_0 / E_p - 2) \varepsilon / \varepsilon_p + (\varepsilon / \varepsilon_p)^2}$$

单轴受压本构关系

> 过镇海模型(2002混凝土结构设计规范建议模型)

无量纲参数: α_a 上升段, 1.5~3.0 α_d 下降段, 0.4~2.0

刚度退化: $E_{\text{sec}} \leq E_0$ 引入损伤变量表示刚度退化: $E_{\rm sec} = (1 - d_c) E_0$ (受压)损伤变量: $0 \le d_c \le 1$ 基于损伤表示的单轴受压本构关系: $\sigma = E_{sec} \varepsilon = (1 - d_c) E_0 \varepsilon = (1 - d_c) \overline{\sigma}$ 其中有效应力: $\overline{\sigma} = E_0 \varepsilon$

单轴受压本构关系

▶ 损伤模型

基于实验数据拟合或者理论分析, 可得单轴受压本构关系表示为应 力和应变的函数如下:

$$\sigma = f(\varepsilon)$$

损伤本构关系表达式:

 $\sigma = (1 - d_c) E_0 \varepsilon$

联立可得损伤演化方程:

$$d_{c}(\varepsilon) = 1 - \frac{\sigma}{E_{0}\varepsilon} = 1 - \frac{f(\varepsilon)}{E_{0}\varepsilon}$$

▶ 损伤模型

考虑过镇海模型,与损伤本构关系式联立求得损伤演化方程:

$$d_{c} = \begin{cases} \rho_{c} \left[(2\alpha_{a} - 3) + 2(2 - \alpha_{a})x \right] & x \le 1 \\ \frac{\rho_{c} \left[2\alpha_{d} (x - 1) + 1 \right]}{\left[\alpha_{d} (x - 1)^{2} + x \right]^{2}} & x > 1 \end{cases}$$

$$\alpha_{a} \in [1.5, 3.0]$$

$$d_c(0) \neq 0$$
 or $\alpha_a = 1.5$

$$\alpha_a = \frac{1}{\rho_c} = \frac{E_0 \mathcal{E}_c}{f_c} \triangleq \frac{E_0}{E_p}$$

现行混凝土结构设计规范(GB50010-2010)

▶ 损伤模型

矩形截面箍筋约束混凝土柱轴心受压力学行为

箍筋约束受压机理

感谢冯德成@SEU

约束受压本构关系

➤ Mander模型

Theoretical stress-strain model for confined concrete JB Mander, MJN Priestley, R Park - Journal of structural ..., 1988 - ascelibrary.org A stress-strain model is developed for concrete subjected to uniaxial compressive loading and confined by transverse reinforcement. The concrete section may contain any general type of confining steel: either spiral or circular hoops; or rectangular hoops with or without

supplementary cross ties. These cross ties can have either equal or unequal confining stresses along each of the transverse axes. A single equation is used for the stress-strain equation. The model allows for cyclic loading and includes the effect of strain rate. The ... ☆ ワワ 被引用次数: 7219 相关文章 所有 14 个版本

 $f_c = \frac{f_{cc}' xr}{r - 1 + x^r}$

> 规范损伤模型

$$\sigma = (1 - d_c) E_0 \varepsilon$$

$$d_{c} = \begin{cases} 1 - \frac{\rho_{c}n}{n - 1 + x^{n}} & x \le 1\\ 1 - \frac{\rho_{c}}{\alpha_{c}(x - 1)^{2} + x} & x > 1 \end{cases}$$

表 1 试验数据 Table.1 Test data

试件名	$f_{\rm c}/{ m MPa}$	$f_1^{'}/\mathrm{MPa}$	$lpha_{c}$	试件 数	来源
HJA1~5	48	2.29	0.26	5	
MJA1~5	48	1.34	0.63	5	本文
LJA1~5	48	0.78	0.82	5	
HA1	47.8	3.36	0.23	1	
HA2	47.8	2.21	0.39	1	
HA3	47.8	1.63	0.77		
HA5	47.8	2.58	0.35		文献
HA6	47.8	1.61	- 4 65 J	1	[16]
HA7	47.8	1.06	1:60	1	
LA1	25.2	1141	0.11	1	
LA2	25.21	1.02	0.19	1	
A1~3	F85.01	1.54	0.37	3	
B1~3	22.7	1.74	0.39	6	文献
D1~3 E1~3	25.4	1.51	0.27	6	[17]
z9	37.5	0.89	1.05	1	
z10	37.5	1.36	0.87	1	文献
z11	37.5	2.75	0.59	1	[10]
z13	37.5	4.49	0.43	1	
SC23	60	4.26	0.21	1	
SC24	60	3.84	0.21	1	文献
SC25	60	4.07	0.10	1	[18]
SC26	60	4.18	0.21	1	

矩形箍筋约束混凝土柱

> 单轴重复加载试验结果

▶ 残余应变模型

$$\varepsilon_{pl} = \varepsilon_{un} - \frac{\left(\varepsilon_{un} + \varepsilon_a\right) f_{un}}{f_{un} + E_c \varepsilon_a}$$

$$\varepsilon_a = a \sqrt{\varepsilon_{un} \varepsilon_{cc}}$$

$$a = \frac{\varepsilon_{cc}}{\varepsilon_{un} + \varepsilon_{cc}} \text{ or } a = \frac{0.09\varepsilon_{un}}{\varepsilon_{cc}}$$

by Mander

弹塑性损伤模型 \succ 弹性损伤模型 $\sigma = (1 - d_c) E_0 \varepsilon$ $\sigma = (1 - d_c') E_0 \left(\varepsilon - \varepsilon_p \right)$ 弹塑性损伤模型

by Mander

> 单轴受拉实验

非线性!随机性!

单轴拉伸加载示意图

感谢曾莎洁@上海建科集团

单轴受拉本构关系 3.5 - SPT501-8 3.0 - SPT502-1 > 规范受拉损伤模型 - SPT502-2 SPT502-3 2.52.5 SPT502-5 SPT502-9 റ (MPa) 2.0 -原模型 改进模型 -**B**---**D**--Mean Curve 应 力 1.型 1.0 0.5 0.0 100 ²⁰⁰ 200 400 **400** 500 300 600 500 应我(16) 600 0 ε (**10**⁻⁶)

700

800

> 断裂力学模型

单轴受拉本构关系

> 断裂力学模型

What we know

What we know we don't know

What we don't know that we don't know

> 弹塑性损伤模型

受压侧曲线:

 $\sigma = (1 - d_c') E_0 \left(\varepsilon - \varepsilon_p \right)$

 $d_c' = \eta_d d_c \qquad \eta_d = \frac{\varepsilon_{cc}}{\varepsilon_{cc} + \varepsilon_a}$

$$d_{c} = \begin{cases} 1 - \frac{\rho_{c}n}{n - 1 + x^{n}} & x \le 1\\ 1 - \frac{\rho_{c}}{\alpha_{c}(x - 1)^{2} + x} & x > 1 \end{cases}$$

$$x = \frac{\max_{\tau \in [0,t]} \mathcal{E}(\tau)}{\mathcal{E}_{c}} \qquad \mathcal{E}_{p} = \phi_{p} \max_{\tau \in [0,t]} \mathcal{E}(\tau)$$

> 弹塑性损伤模型

受拉侧曲线:

$$\sigma = (1 - d_t) E_0 \left(\varepsilon - \varepsilon_p \right)$$

$$d_{t} = \begin{cases} 1 - \frac{\rho_{t}n}{n - 1 + x^{n}} & x \le 1\\ 1 - \frac{\rho_{c}}{\alpha_{t}(x - 1)^{2} + x} & x > 1 \end{cases}$$

$$= \frac{\max_{\tau \in [0,t]} \left[\mathcal{E}_p - \mathcal{E}(\tau) \right]}{\mathcal{E}_t}$$

 \mathcal{X}

拉压反复加载本构关系

≻ 弹塑性损伤模型

拉压判断: 受压侧: $\sigma \ge 0$ 受拉侧: $\sigma < 0$ 拉压统一模型: $\sigma = \left[\mathrm{H}(\sigma)(1-d'_{c}) + \mathrm{H}(-\sigma)(1-d_{t}) \right] E_{0} \left(\varepsilon - \varepsilon_{n} \right)$ $= (1 - D_{ct}) E_0 (\varepsilon - \varepsilon_p)$ $D_{ct} = (d_c) H(\sigma) + (d_t) H(-\sigma)$ Heaviside函数: $H(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$

OpenSees中国规范模型:

http://opensees.berkeley.edu/wiki/index.php/ConcreteD

随机损伤本构关系(一维)
→ 并联原件模型
応机函数表达

$$D(\varepsilon) = \frac{1}{A} \int_{\Omega} H[\varepsilon - \Delta(x)] dA$$

 $\Delta(x)$ 为一维随机场
随机场一维二维密度函数
 $f_{\Delta}(\Delta; \mathbf{x}) = f_{\Delta}(\Delta)$
 $f_{\Delta}(\Delta; \mathbf{x}) = f_{\Delta}(\Delta)$

> 并联原件模型

> 考虑次滞回圈的模型

> 经典弹塑性模型

(a) Menegotto-Pinto model

(b) Parameters in Menegotto-Pinto model

Menegotto-Pinto Model

▶ 局部屈曲和损伤累积

Sashi K. Kunnath; YeongAe Heo; and Jon F. Mohle

感谢各位同学!

任晓丹 rxdtj@tongji.edu.cn www.renxiaodan.com

同济大学土木工程学院